Electrohydrodynamics: equations and their application to paradigmatic flows

Alberto T. Pérez

Departmento de Electrónica y Electromagnetismo Universidad de Sevilla

September 1st and 2nd, 2016 / International Workshop Poitiers

・ロット 御マ キョマ キョン

Outline

- Electroconvection in a liquid layer subjected to unipolar injection
 - Mathematical model
 - Linear stability analysis
 - Numerical difficulties in the simulation of the electroconvection of finite amplitude

2 EHD plumes

- Assumptions
- 2D plumes
- Axisymmetric plumes
- 8 Rose-window instability
 - Introduction
 - Instability mechanism
 - Mathematical model
 - Numerical results

Mathematical model

Outline

- Electroconvection in a liquid layer subjected to unipolar injection
 - Mathematical model
 - Linear stability analysis
 - Numerical difficulties in the simulation of the electroconvection of finite amplitude

2 EHD plumes

- Assumptions
- 2D plumes
- Axisymmetric plumes
- 3 Rose-window instability
 - Introduction
 - Instability mechanism
 - Mathematical model
 - Numerical results

Mathematical model

Physical system

Figure: Geometrical configuration

ヘロト ヘ回ト ヘヨト ヘヨト

Mathematical model

Physical system

Figure: Atten and Lacroix 1978

Electroconvection in a liquid layer subjected to unipolar injection

Mathematical model

An incompressible dielectric liquid of negligible conductivity.

$$\nabla^{2} \Phi = -\frac{q}{\epsilon}$$
$$\frac{\partial q}{\partial t} + \nabla \cdot \mathbf{j} = 0$$
$$\nabla \cdot \mathbf{u} = 0$$
$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla \rho\right) = \eta \nabla^{2} \mathbf{u} + q \mathbf{E}$$

where $\mathbf{j} = q(K\mathbf{E} + \mathbf{u} - D\nabla q)$ and $\mathbf{E} = -\nabla \Phi$.

・ロット 御マ キョマ キョン

Electroconvection in a liquid layer subjected to unipolar injection

Mathematical model

Boundary conditions

The electric boundary conditions are:

$$\Phi(z = 0) = V$$

 $\Phi(z = d) = 0$
 $q(z = 0) = q_0$

The mechanical boundary conditions are

$$u = 0$$
 at $z = 0, d$

ヘロン ヘロン ヘロン ヘロン

Mathematical model

Non-dimensional equations

$$\nabla^{2} \Phi = -q$$

$$\frac{\partial q}{\partial t} + \nabla \cdot (q(\mathbf{E} + u) - \alpha \nabla q) = 0$$

$$\nabla \cdot \mathbf{u} = 0$$

$$\frac{T}{M^{2}} \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p \right) = \nabla^{2} \mathbf{u} + Tq\mathbf{E}$$

with the boundary conditions:

$$\Phi(z = 0) = 1$$

 $\Phi(z = d) = 0$
 $q(z = 0) = C$
 $u = 0$ at $z = 0, d$

Mathematical model

Non-dimensional parameters

•
$$T = \frac{\epsilon V}{k\eta}$$
.

- $M = \sqrt{\epsilon/\rho}/K$. The quantity $\sqrt{\epsilon/\rho}$ is known as the Electrohydrodynamic mobility.
- $C = q_0 d^2 / \epsilon V$. Recall that $\epsilon V / d^2$ existing on the electrodes as a consequence of the applied voltage.
- $\alpha = D/KV$. Einstein's relation implies $D/K = k_B \Theta/e \sim 0.025$ V at room temperature. Therefore, $\alpha = 0.025/V$.

Mathematical model

Charge and field distribution in the hydrostatic state

$$E_{0z} = \sqrt{2j(z+b)}$$
$$q_0 = \sqrt{\frac{j}{2(z+b)}}$$

The electric boundary conditions give:

$$\sqrt{j}((1+b)^{3/2}-b^{3/2}) = rac{3}{2\sqrt{2}}$$

 $2bC^2 = j$

Theses two equations provide the current density for every value of *C*.

Electroconvection in a liquid layer subjected to unipolar injection

Mathematical model

The current density is a function of the injection level

Figure: Current density as a function of injection level.

Mathematical model

Weak and strong injection limits

• $C \to \infty$

$$E_{0z} = \frac{3}{2}\sqrt{z}$$
$$q_0 = \frac{3}{4\sqrt{z}}$$
$$j = \frac{9}{8}$$

• *C* << 1

$$E_{0z} = 1 - \frac{C}{2} + Cz + O(C^2)$$

$$q_0 = C - C^2 z + O(C^3)$$

$$j = C + O(C^2)$$

)

・ロト ・ 四ト ・ ヨト ・ ヨト

Linear stability analysis

Outline

- Electroconvection in a liquid layer subjected to unipolar injection
 - Mathematical model
 - Linear stability analysis
 - Numerical difficulties in the simulation of the electroconvection of finite amplitude

2 EHD plumes

- Assumptions
- 2D plumes
- Axisymmetric plumes
- 3 Rose-window instability
 - Introduction
 - Instability mechanism
 - Mathematical model
 - Numerical results

Electroconvection in a liquid layer subjected to unipolar injection

Linear stability analysis

Perturbation of the hydrostatic state

$$\Phi = \Phi_0 + \delta \phi$$

$$q = Q_0 + \delta q$$

$$p = p_0 + \delta p$$

$$\mathbf{u}$$

Neglecting non-linear terms yields:

$$\nabla^{2}\delta\phi = -\delta q$$

$$\frac{\partial\delta q}{\partial t} + \nabla \cdot (\delta q \mathbf{E}_{0} + Q_{0}\delta \mathbf{E} + Q_{0}\mathbf{u}) = 0$$

$$\nabla \cdot \mathbf{u} = 0$$

$$\frac{T}{M^{2}} \left(\frac{\partial \mathbf{u}}{\partial t} + \nabla\delta p\right) = \nabla^{2}\mathbf{u} + T(Q_{0}\delta \mathbf{E} + \delta q \mathbf{E}_{0})$$

Linear stability analysis

Perturbation of the hydrostatic state

Eliminating the pressure term by taking twice the curl of equation (33). Only the z-component of the velocity is needed, which is:

$$\frac{T}{M^2}\frac{\partial \nabla^2 u_z}{\partial t} = \nabla^4 u_z + T \nabla_s^2 (\frac{d\Phi_0}{dz} \nabla^2 \delta \phi - \frac{d^3 \Phi_0}{dz^3} \delta \phi)$$

Linear stability analysis

Normal modes

Introducing normal modes:

$$u_z = u(z)e^{i(k_x x + k_y y)}e^{st}$$

$$\delta \phi = g(z)e^{i(k_x x + k_y y)}e^{st}$$

the equations become:

$$\frac{T}{M^2}s(\frac{d^2u}{dz^2}-k^2u)=(\frac{d^2}{dz^2}-k^2)^2u-k^2T(\frac{dQ_0}{dz}g-E_0(\frac{d^2}{dz^2}-k^2)g)$$

$$-s(\frac{d^{2}g}{dz^{2}} - k^{2}g) - \frac{dQ_{o}}{dz}\frac{dg}{dz} - 2Q_{0}(\frac{d^{2}g}{dz^{2}} - k^{2}g) - E_{0}\frac{d}{dz}(\frac{d^{2}g}{dz^{2}} - k^{2}g) + \frac{dQ_{0}}{dz}u = 0$$

・ロト ・ 四ト ・ ヨト ・ ヨト

Linear stability analysis

Boundary conditions

The boundary conditions are expressed in terms of u and g in the following way:

$$u(0) = 0$$

$$\frac{du}{dz}(0) = 0$$

$$u(1) = 0$$

$$\frac{du}{dz}(1) = 0$$

$$g(0) = 0$$

$$g(1) = 1$$

$$\frac{d^2g}{dz^2}(0) = 0$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Linear stability analysis

Analytical approximative solution for weak injection

The equations simplify for C << 1 and (s = 0). With $E_0 = 1$ and $Q_0 = C - C^2 z$.

$$(\frac{d^2}{dz^2} - k^2)^2 u = k^2 T \delta \overline{q}$$
$$\frac{d}{dz} \delta \overline{q} - C^2 u = 0$$

where
$$\delta \overline{q} = -(d^2g/dz^2 - k^2g).$$

The second equation reveals the instability mechanism.

・ロット 御マ キョマ キョン

Electroconvection in a liquid layer subjected to unipolar injection

Linear stability analysis

Galerkin method

Propose a function:

$$u(z)=z^2(1-z)^2$$

that fulfills the boundary conditions for *u*. The second equation gives:

$$\delta \overline{q} = C^2 (\frac{z^3}{3} - \frac{z^4}{2} + \frac{z^5}{5})$$

Multiplying the first equation by u and integrating between 0 and 1:

$$\int_0^1 u(\frac{d^2}{dz^2} - k^2)^2 u \, dz = k^2 T \int_0^1 u \delta \overline{q} \, dz$$

Linear stability analysis

Galerkin method

For
$$u(z) = z^2(1-z)^2$$
 this equation becomes:

$$TC^2 = \frac{20}{7}k^2 + \frac{120}{7} + \frac{1440}{k^2}$$

This function has a minimum at k = 4.74 for which $TC^2 = 197$. The exact values, determined by numerical methods, are k = 4.57 and $TC^2 = 221$.

Linear stability analysis

Numerical solution

We have a seventh order set of homogenous ordinary linear differential equations with non-constant coefficients. This problem was solved by Atten and Moreau by advanced mathematical methods.

Nowadays it can be efficiently solved by numerical algorithms commercially available. I have used the function bvp4c, available through version 6.1 of Matlab

・ロット 御マ キョマ キョン

Linear stability analysis

The resolution provides T as a function of k

Figure: T as a function of k.

(a)

Linear stability analysis

For every value of C there is a minimum value of T

Figure: Linear stability threshold T_c as a function of injection level C.

For strong injection the instability appears at given voltage.

Numerical difficulties

Outline

Electroconvection in a liquid layer subjected to unipolar injection

- Mathematical model
- Linear stability analysis
- Numerical difficulties in the simulation of the electroconvection of finite amplitude
- 2 EHD plumes
 - Assumptions
 - 2D plumes
 - Axisymmetric plumes
- 3 Rose-window instability
 - Introduction
 - Instability mechanism
 - Mathematical model
 - Numerical results

Numerical difficulties

The charge conservation equation is a first order hyperbolic equation

$$rac{\partial oldsymbol{q}}{\partial t} +
abla \cdot (oldsymbol{q}(oldsymbol{E}+u)) = oldsymbol{0}$$

Taking into account that $\nabla \cdot \mathbf{E} = q$ and $\nabla \cdot \mathbf{u} = 0$ it can be written:

$$\frac{\partial q}{\partial t} + (\mathbf{E} + u) \cdot \nabla q = -q^2$$

This is a first order partial differential equation.

Numerical difficulties

It is equivalent to the set of ordinary differential equations:

$$\frac{dq}{dt} = -q^2$$
$$\frac{dx}{dt} = u_x + E_x$$
$$\frac{dz}{dt} = u_z + E_z$$

The solution of the first equation is

$$q(t)=\frac{q_0}{1+q_0t}$$

The value of q at a given point is determined by the characteristic line connecting that point to the boundary.

Numerical difficulties

Numerical diffusion

The origin of numerical diffusion can be understood from a simplify analysis. Consider the one dimensional equation:

$$\frac{\partial q}{\partial t} + \frac{\partial uq}{\partial x} = 0$$

Assuming *u* constant and u > 0, typical finite-difference *upwind* discretization of this equation in a mesh $\{x_i\}_{i=1, Idots, m}$ is:

$$q_i^{t+\Delta t} = q_i^t - \frac{u\delta t}{\delta x}(q_i^t - q_{i-1}^t)$$

A power expansion gives:

$$q_{i}^{t+\Delta t} = q_{i}^{t} + \frac{\partial q_{i}}{\partial t} \Delta t + \frac{1}{2} \frac{\partial^{2} q_{i}}{\partial t^{2}} (\Delta t)^{2} + O(\Delta^{3} t)$$

$$q_{i-1}^{t} = q_{i}^{t} - \frac{\partial q_{i}}{\partial x} \Delta x + \frac{1}{2} \frac{\partial^{2} q_{i}}{\partial x^{2}} (\Delta x)^{2} + O(\Delta^{3} x)$$

Numerical difficulties

Taking $\partial/\partial t$ in the original equation, with *u* constant, is

$$\frac{\partial^2 q}{\partial t^2} + u \frac{\partial^2 q}{\partial x \partial t} = 0$$

Collecting the terms we get:

$$\frac{\partial q}{\partial t} + \frac{\partial uq}{\partial x} = \alpha_N \frac{\partial^2 q}{\partial x^2} + O(\Delta^2 t, \Delta^2 x)$$

with

$$\alpha_N = \frac{1}{2}u\Delta x(1-\frac{u\Delta t}{\Delta x})$$

The numerical errors behave diffusively. For $\Delta x \sim 1/100$, $u \sim 1$ and $\Delta t \sim 1/200$ is $\alpha_N \sim 2.5 \times 10^{-3}$.

EHD plumes

Assumptions

Outline

Electroconvection in a liquid layer subjected to unipolar injection

- Mathematical model
- Linear stability analysis
- Numerical difficulties in the simulation of the electroconvection of finite amplitude

2 EHD plumes

Assumptions

- 2D plumes
- Axisymmetric plumes
- 8 Rose-window instability
 - Introduction
 - Instability mechanism
 - Mathematical model
 - Numerical results

EHD plumes

Assumptions

Physical system

ヘロン 人間 とくほどうほう

EHD plumes

Assumptions

Schlieren image

EHD flows		
EHD plumes		
Assumptions		

- The electric field is consider to be constant $\mathbf{E} = E_0 \mathbf{e}_z = (V/d) \mathbf{e}_z$.
- Charge diffusion and drift are neglected (u >> KE).
- The structure of the flow is that of a boundary layer flow. In this case this implies neglecting $\partial^2 u/\partial z^2$ in front of $\partial^2 u/\partial x^2$.
- The flow is steady.
- The pressure is constant. This will not be the case if recirculation or wall effects are not negligible.

A D > A B > A B > A B >

EHD plumes

2D plumes

Outline

Electroconvection in a liquid layer subjected to unipolar injection

- Mathematical model
- Linear stability analysis
- Numerical difficulties in the simulation of the electroconvection of finite amplitude

2 EHD plumes

Assumptions

2D plumes

- Axisymmetric plumes
- 3 Rose-window instability
 - Introduction
 - Instability mechanism
 - Mathematical model
 - Numerical results

EHD plumes

2D plumes

$$\frac{\partial u_x}{\partial x} + \frac{\partial u_z}{\partial z} = 0$$
$$u_x \frac{\partial u_x}{\partial x} + u_z \frac{\partial u_z}{\partial z} = \nu \frac{\partial^2 u_x}{\partial x^2} + \frac{1}{\rho} q E_z$$
$$u_x \frac{\partial q}{\partial x} + u_z \frac{\partial q}{\partial z} = 0$$

EHD plumes

2D plumes

Boundary conditions

$$u_x = rac{\partial u_z}{\partial x} = rac{\partial q}{\partial x} = 0$$
 at $x = 0$
 $u_x = q = 0$ for $x \to \infty$

The electric current through any section is invariant:

$$J=\int_{-\infty}^{\infty}qu_{z}\,dx$$

To fix J is equivalent to assign a level of injection to the injector.

A D > A B > A B > A B >

EHD plumes

2D plumes

Similarity method

Basic idea

• If they are conveniently scaled, the velocity and charge profile have the same form at every section.

Using the stream function $\Psi(x, z)$:

$$u_x = -\partial \Psi / \partial z$$
 $u_z = \partial \Psi / \partial x$

We look for a solution of the type:

$$\eta = c(z)x, \quad \Psi = \nu d(z)f(\eta), \quad q = a(z)g(\eta)$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト
EHD plumes

2D plumes

Similarity method

Chosing the constants appropriately

$$\eta = \left(\frac{JE}{16\rho\nu^3}\right)^{1/5} \frac{x}{z^{2/5}}$$

$$\Psi = 4\nu \left(\frac{JE}{16\rho\nu^3}\right)^{1/5} z^{3/5} f(\eta)$$

$$q = \left(\frac{\rho J^4}{64\nu^2 E}\right) z^{-3/5} g(\eta)$$

The underlying idea of the method is that as long as the flow is open there is not a typical length scale.

・ロット 御マ キョマ キョン

EHD flows EHD plumes 2D plumes

The profiles of velocity and charge are given by the solution of

$$f''' + \frac{12}{5}ff'' - \frac{4}{5}f'^2 - g = 0$$

$$f'g + fg' = 0$$

along with the boundary conditions

$$egin{array}{ll} f=f'=g'=0 & ext{at} & \eta=0 \ f'=0 & ext{for} & \eta
ightarrow\infty \ \int_{-\infty}^{\infty}f'g\,d\eta & = & 1 \end{array}$$

The second equation and the boundary conditions imply that

$$g = 0$$

except at $\eta = 0$

EHD plumes

2D plumes

Singularity at the origin

The charge profile can be expressed:

$$g(\eta) = g_0 \delta(\eta)$$

Integrating between 0 and 0⁺

$$f''' + \frac{12}{5}ff'' - \frac{4}{5}f'^2 - g = 0$$

gives a new boundary condition

$$f'(0^+)f''(0^+) + \frac{1}{2} = 0$$

ヘロト ヘロト ヘビト ヘビト

EHD plumes

2D plumes

Equivalent problem

The profile of velocity is solution of

$$f''' + \frac{12}{5}ff'' - \frac{4}{5}f'^2 = 0$$

with boundary conditions

$$f'(0^+)f''(0^+) + \frac{1}{2} = 0$$

$$f(0^+) = 0$$

$$f'(\infty) = 0$$

・ロト ・ 四ト ・ ヨト ・ ヨト

EHD plumes

2D plumes

Velocity profile

EHD plumes

2D plumes

Comparison with a thermal plume

For a thermal plume the second equation is

$$g''+\frac{12}{5}\mathsf{Pr}(f'g+\mathit{f}g')=0$$

whose solution is

$$g(\eta) = g(0) \exp - \left(rac{12}{5} \operatorname{Pr} \int_0^\eta f(s) \, ds
ight)$$

Conclusion

- Thermal plumes in the limit of infinite Prandtl number are similar to EHD plumes.
- The thickness of the charge region plays the role of the thickness of the thermal layer.

EHD plumes

Axisymmetric plumes

Outline

Electroconvection in a liquid layer subjected to unipolar injection

- Mathematical model
- Linear stability analysis
- Numerical difficulties in the simulation of the electroconvection of finite amplitude

2 EHD plumes

- Assumptions
- 2D plumes
- Axisymmetric plumes
- 8 Rose-window instability
 - Introduction
 - Instability mechanism
 - Mathematical model
 - Numerical results

EHD plumes

Axisymmetric plumes

$$\frac{\partial r u_z}{\partial z} + \frac{\partial r u_r}{\partial r} = 0$$

$$u_z \frac{\partial u_z}{\partial z} + u_r \frac{\partial u_r}{\partial r} = \frac{\nu}{r} \frac{\partial}{\partial r} (r \frac{\partial u_z}{\partial r}) + \frac{1}{\rho} q E_z$$

$$u_r \frac{\partial q}{\partial r} + u_z \frac{\partial q}{\partial z} = 0$$

EHD plumes

Axisymmetric plumes

Boundary conditions

$$u_r = rac{\partial u_z}{\partial r} = rac{\partial q}{\partial r} = 0$$
 at $r = 0$
 $u_z = q = 0$ for $r \to \infty$

To these conditions the constancy of the electric current on any section of the flow must be added:

$$J=2\pi\int_0^\infty q u_z r\,dr$$

EHD plumes

Axisymmetric plumes

Similarity method

Introducing the stream function Ψ :

$$u_r = -\frac{1}{r} \partial \Psi / \partial z$$
 $u_z = \frac{1}{r} \partial \Psi / \partial r$

Following a similar procedure gives

$$\eta = \left(\frac{JE}{2\pi\rho\nu^3}\right)^{1/4} \frac{r}{z^{1/2}}$$
$$\Psi = 4\nu z f(\eta)$$
$$q = \frac{J}{2\pi\nu z} g(\eta)$$

The exponents of the scaling laws are different

- $\eta \sim x/z^{2/5}$ for 2D plumes
- $\eta \sim r/z^{1/2}$ for axisymmetric plumes

The profiles of velocity and charge are given by the solution of

$$\frac{f'''}{\eta} + \frac{f-1}{\eta} \left(\frac{f'}{\eta}\right) + g = 0$$
$$f'g + fg' = 0$$

along with the boundary conditions

$$(rac{f'}{\eta})'=rac{f}{\eta}-rac{1}{2}f''=g'=0 \quad ext{at} \quad \eta=0$$
 $rac{f'}{\eta}=g=0 \quad ext{for} \quad \eta o \infty$
 $\int_0^\infty f'g\,d\eta = 1$

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

EHD plumes

Axisymmetric plumes

Singularity at the origin

- A delta function does not give a finite velocity.
- In the thermal problem the velocity at the axis diverges as

$$rac{f'}{\eta}(\eta=0)\simeq \sqrt{\ln {\mathsf{Pr}}}$$

Therefore, for axisymmetric EHD plumes it is

$$rac{f'}{\eta}(\eta=0)\simeq \sqrt{\ln(-a^2)}$$

with *a* the thickness of the charged layer in η coordinates.

Conclusion

 Unlike the 2D case, the velocity at the axis of axisymmetric plumes depends on the thickness of the charged layer. However, this dependency is very weak

Introduction

Outline

Electroconvection in a liquid layer subjected to unipolar injection

- Mathematical model
- Linear stability analysis
- Numerical difficulties in the simulation of the electroconvection of finite amplitude

2 EHD plumes

- Assumptions
- 2D plumes
- Axisymmetric plumes
- 8 Rose-window instability
 - Introduction
 - Instability mechanism
 - Mathematical model
 - Numerical results

Rose-window instability

Introduction

Introduction

Experimental setup V Experimental set up

Olive oil (ohmic) at 10.75 kV

Introduction

Silicone oil (non ohmic) at 5 kV

Silicone oil (non ohmic) at 6 kV

(日)

Differences

- Ohmic regime → large convection cells (Rose-Window instability)
- Non-ohmic regime —> two different patterns coexist

Instability mechanism

Outline

Electroconvection in a liquid layer subjected to unipolar injection

- Mathematical model
- Linear stability analysis
- Numerical difficulties in the simulation of the electroconvection of finite amplitude

2 EHD plumes

- Assumptions
- 2D plumes
- Axisymmetric plumes
- Rose-window instability
 Introduction
 - Instability mechanism
 - Mathematical model
 - Numerical results

Rose-window instability

Instability mechanism

Instability mechanism for Rose-window pattern

Simplified configuration

Rose-window instability

Instability mechanism

Instability mechanism for Rose-window pattern

(ohmic behavior)

Instability mechanism

Instability mechanism for Rose-window pattern

Electric field for an unperturbed interface

・ロト ・聞 ト ・ヨト ・ヨト

Instability mechanism

Instability mechanism for Rose-window pattern

Electric field (perturbed)

・ロト ・ 四ト ・ ヨト ・ ヨト

Rose-window instability

Mathematical model

Outline

Electroconvection in a liquid layer subjected to unipolar injection

- Mathematical model
- Linear stability analysis
- Numerical difficulties in the simulation of the electroconvection of finite amplitude

2 EHD plumes

- Assumptions
- 2D plumes
- Axisymmetric plumes

8 Rose-window instability

- Introduction
- Instability mechanism
- Mathematical model
- Numerical results

Rose-window instability

Mathematical model

Equations in the air region

$$\nabla^2 \phi = -\frac{q}{\epsilon_0},$$

$$\frac{\partial \boldsymbol{q}}{\partial t} + \nabla \cdot \mathbf{J} = \mathbf{0}.$$

with $\mathbf{J} = qK_a\mathbf{E}$

$$-\nabla \boldsymbol{\rho} + \rho_{\boldsymbol{a}} \boldsymbol{g} \boldsymbol{e}_{\boldsymbol{z}} + \boldsymbol{q} \boldsymbol{\mathsf{E}} = \boldsymbol{\mathsf{0}},$$

Air motion is neglected

ヘロン 人間 とくほどうほう

Rose-window instability

Mathematical model

Equations for the liquid region (Ohmic regime)

$$\nabla^2 \phi = \mathbf{0},$$
$$\nabla \cdot \mathbf{J} = \mathbf{0}$$

with $\mathbf{J} = \sigma \mathbf{E}$

 $\nabla \cdot \mathbf{u} = \mathbf{0},$ $\rho_l (\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}) = -\nabla p + \rho_l g \mathbf{e}_z + \eta \nabla^2 \mathbf{u}$ no electric body force

・ 日 ・ ・ 雪 ・ ・ 国 ・ ・ 日 ・

Mathematical model

Boundary conditions at the electrodes

$$\phi = V \quad \text{at} \quad z = -L,$$

$$q = q_0 \quad \text{at} \quad z = -L,$$

$$\phi = 0 \quad \text{at} \quad z = d,$$

$$\mathbf{u} = 0 \quad \text{at} \quad z = d.$$

charge injection

・ロト ・聞ト ・ヨト ・ヨト

Mathematical model

Boundary conditions at the interface (Ohmic regime)

$$[\mathbf{E}] \times \mathbf{n} = \mathbf{0}, \quad [\epsilon \mathbf{E}] \cdot \mathbf{n} = q_s.$$
$$\frac{\partial q_s}{\partial t} + \nabla_s \cdot (q_s \mathbf{u}) + [\mathbf{J}] \cdot \mathbf{n} - [q\mathbf{u}] \cdot \mathbf{n} = \mathbf{0}.$$
$$-\frac{\partial f}{\partial t} + u_z + \mathbf{u} \cdot \nabla_s f = \mathbf{0},$$

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Rose-window instability

Mathematical model

Electric stresses

Mathematical model

Equations and boundary conditions for the non-Ohmic regime

$$\frac{\partial \boldsymbol{q}}{\partial t} + \nabla \cdot \mathbf{J} = \mathbf{0},$$

where $\mathbf{J} = q(K_l \mathbf{E} + \mathbf{u})$.

$$\rho_l(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}) = -\nabla p + \rho_l g \mathbf{e}_z + \eta \nabla^2 \mathbf{u} + q \mathbf{E}.$$

$$[\epsilon \mathbf{E}] \cdot \mathbf{n} = \mathbf{0}.$$
$$[\mathbf{J}] \cdot \mathbf{n} - [q\mathbf{u}] \cdot \mathbf{n} = \mathbf{0}.$$
$$\eta \mathbf{t} \cdot \left(\nabla \mathbf{u} + \nabla \mathbf{u}^{T}\right) \cdot \mathbf{n} = \mathbf{0}$$

ヘロト ヘロト ヘビト ヘビト

Rose-window instability

Mathematical model

Differences between both models

	Ohmic	Non-Ohmic
Electric current	$\mathbf{J} = \sigma \mathbf{E}$	$\mathbf{J} = qK_{l}\mathbf{E}$
Volume force	0	qE
Surface charge density	$[\epsilon \mathbf{E}] \cdot \mathbf{n} = q_s$	$[\epsilon \mathbf{E}] \cdot \mathbf{n} = 0$
Tangential stress at the interface	<i>q</i> ₅E ⋅ t	0

・ロト ・聞ト ・ヨト ・ヨト

Rose-window instability

Mathematical model

Stability study

$$\phi = \phi_{s} + \delta\phi$$

$$\delta\phi = g(z) \exp(\omega t) \exp(i(k_{x}x + k_{y}y))$$

- Ohmic case: set of 9 first order linear differential equations with 10 boundary conditions.
- Non Ohmic case: set of 10 first order linear differential equations with 11 boundary conditions.

・ ロ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

Numerical results

Outline

Electroconvection in a liquid layer subjected to unipolar injection

- Mathematical model
- Linear stability analysis
- Numerical difficulties in the simulation of the electroconvection of finite amplitude

2 EHD plumes

- Assumptions
- 2D plumes
- Axisymmetric plumes

8 Rose-window instability

- Introduction
- Instability mechanism
- Mathematical model
- Numerical results

Rose-window instability

Numerical results

Results

Stability diagram for an Ohmic liquid as a function of the conductivity

Numerical results

Stability parameter $U = \frac{\epsilon_0 \rho_l V^2}{\eta^2}$ as a function of the wavenumber (Ohmic case).

Numerical results

Stability parameter as a function of the wavenumber (non Ohmic case).

< ロ > < 回 > < 回 > < 回 > < 回 >

Rose-window instability

Numerical results

- The mathematical equations of EHD flow are well established and tested.
- Semi-analytical methods help to understand the underlying physical mechanisms.
- The numerical resolution of EHD flows require algorithms that avoid numerical diffusion.

Rose-window instability

Numerical results

- The mathematical equations of EHD flow are well established and tested.
- Semi-analytical methods help to understand the underlying physical mechanisms.
- The numerical resolution of EHD flows require algorithms that avoid numerical diffusion.

A D > A B > A B > A B >

Rose-window instability

Numerical results

- The mathematical equations of EHD flow are well established and tested.
- Semi-analytical methods help to understand the underlying physical mechanisms.
- The numerical resolution of EHD flows require algorithms that avoid numerical diffusion.

A D > A B > A B > A B >