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Figure: Geometrical configuration u“;»g"
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Figure: Atten and Lacroix 1978 u“*wf"
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Equations

An incompressible dielectric liquid of negligible conductivity.

v = -9
€
oq .
EJFV-] = 0
V-u =0
ou >
p E-FU'VU—FV[) = nVeu+gE

where j = Q(KE +u — DVqg) and E = —Vo.
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Boundary conditions

The electric boundary conditions are:

®(z=0) = V
®(z=d) = 0
q(z=0) = qo

The mechanical boundary conditions are

u=0a z=0,d
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Non-dimensional equations

Vi = —q
9q
a‘l-v (gE+u)—aVqg) = 0
V-u =0
T (0u R
W(ar*“ Vu+Vp) = Veu+ TgE
with the boundary conditions:
®(z=0) = 1
®(z=d) = 0
g(z=0) = C

u =0 at z=0,d
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Non-dimensional parameters

@ M= ./¢/p/K. The quantity \/¢/p is known as the
Electrohydrodynamic mobility.

@ C = god?/eV. Recall that €V /d? existing on the electrodes
as a consequence of the applied voltage.

@ a = D/KV. Einstein’s relation implies
D/K = kg©/e ~ 0.025 V at room temperature. Therefore,
a=0.025/V.

s
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Charge and field distribution in the hydrostatic state

EOz = 2_[(Z+b)
J
2(z+b)

Q =
The electric boundary conditions give:
(1 4+ b)%2 - p%2) — 2
Vi((1 +b) ) = o
2bC? = j

Theses two equations provide the current density for every
value of C.
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The current density is a function of the injection
level

Figure: Current density as a function of injection level. B
ko
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Weak and strong injection limits

e C—
3
EOZZE\/E
_ 3
9
/= 8
o C<<A1

Eo, = 1—g+Cz+ O(C?)

g = C-C’2+0(C%
j = C+0(C%
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Perturbation of the hydrostatic state

d = Pyg+60

q = Q+dq

p = po+dp
u

Neglecting non-linear terms yields:

V26p = —6q
5
‘E’+v-(5qu+Qan+oou) -0
V-u = 0

T [/ou _ 2 )
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Perturbation of the hydrostatic state

Eliminating the pressure term by taking twice the curl of
equation (33). Only the z-component of the velocity is needed,
which is:

T oVau,
M2 ot

ddg
dz

dcbo

= V*u, + TVE(—==2V25¢p —

5 00)

=
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Normal modes

Introducing normal modes:

u, = U(Z) ei(kxx+kyy) est
S = g(z)e/(kxx+kyy) est

the equations become:

T d?u d? dQ d?
1Sz KW = (G KPP UK T (0~ Bl Gz —k)9)
dzg 2 dQ, dg dZQ 2
Sz K9~ gy ~ 2l —K9) -
d g .. dQ :
0oz gz ~ K9+ g u=0 u#
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Boundary conditions

The boundary conditions are expressed in terms of u and g in
the following way:

SIS

o~

SIS
I
- 0o o o o o
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Analytical approximative solution for weak injection

The equations simplify for C << 1 and (s = 0).
With E, =1and Qy = C — C?z.

d2

(@—k%?u = k2Toq
(‘Laq—c?u =0

where 6q = —(d?g/dz? — k2g).

The second equation reveals the instability mechanism.

= |
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Galerkin method

Propose a function:
u(z) = 22(1 — 2)?

that fulfills the boundary conditions for u.
The second equation gives:

— 2 s = =
Multiplying the first equation by v and integrating between 0
and 1:

1 d2 - 5 1 B
/0 u(@—k)udz:k T/o uéqdz

=
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Galerkin method

For u(z) = z?(1 — z)? this equation becomes:

120 1440

20 | 1440
7 ke

TC? = k2
This function has a minimum at k = 4.74 for which TC? = 197.

The exact values, determined by numerical methods, are
k =4.57 and TC? = 221.

=
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Numerical solution

We have a seventh order set of homogenous ordinary linear
differential equations with non-constant coefficients. This
problem was solved by Atten and Moreau by advanced
mathematical methods.

Nowadays it can be efficiently solved by numerical algorithms

commercially available. | have used the function bvp4c,
available through version 6.1 of Matlab

=
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The resolution provides T as a function of k

Figure: T as a function of k.
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For every value of C there is a minimum value of T
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Figure: Linear stability threshold T, as a function of injection level C.

. N . u;’;éé“
For strong injection the instability appears at given voltage. -
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The charge conservation equation is a first order
hyperbolic equation

0

T4V (qE+u) =0
Taking into accountthat V-E =qgand V -u = 0 it can be
written: 5

6—;’+(E+u)-Vq:—q2

This is a first order partial differential equation.

=
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Electroconvection in a liquid layer subjected to unipolar injection

Numerical difficulties

It is equivalent to the set of ordinary differential equations:

d -
ar - q
ax
E = UX + EX
az
a uz + E;
The solution of the first equation is
o
) =
q( ) 1+ qot

The value of g at a given point is determined by the
characteristic line connecting that point to the boundary.

s
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Numerical diffusion

The origin of numerical diffusion can be understood from a
simplify analysis. Consider the one dimensional equation:
dq | duq
at " ox
Assuming u constant and u > 0, typical finite-difference upwind
discretization of this equation in a mesh {X;};—1_igots,m IS:

=0

¢ udt t

qit+m =g X (@ —ai_4)
A power expansion gives
2le] 19%q;
ot o gty 99 I 2 3
q; = g+ 5 — At + > IR (A + O(A°t)

0 162
Gy = o - Grdx+ 5oL (AXP+0a%) UK
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Numerical difficulties

Taking 9/0t in the original equation, with u constant, is

#q *q
22 TUaxar O

Collecting the terms we get:

0q  dugq _ 0%q

2 2
8t+ o —aerO(A t, A“x)
with 1 N
u

The numerical errors behave diffusively.
For Ax ~ 1/100, u ~ 1 and At ~ 1/200is ay ~ 2.5 x 1073,

s
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Physical system u“*xr*
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Assumptions

@ The electric field is consider to be constant
E = Eje; = (V/d)e;.

@ Charge diffusion and drift are neglected ( u >> KE ).

@ The structure of the flow is that of a boundary layer flow. In
this case this implies neglecting 9?u/dz? in front of
d2u/ox>.

@ The flow is steady.

@ The pressure is constant. This will not be the case if
recirculation or wall effects are not negligible.
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Boundary conditions

_Ouy 90q B
ux_a—x_a_o at x=0

uy=q=0 for x -
The electric current through any section is invariant:
o
J:/ qu; dx
—0o0
To fix J is equivalent to assign a level of injection to the injector.

s
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2D plumes

Similarity method

Basic idea

@ If they are conveniently scaled, the velocity and charge
profile have the same form at every section.

Using the stream function V(x, z):
uy =—0V/0z uy=090V/ox
We look for a solution of the type:

n=c(2)x, V=wvd2)f(n), q=alz)9(n)

=
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Similarity method

Chosing the constants appropriately

JE \"° x
= (16pu3> z2/5

Vo= 4;/( 1 6py3> z%/5¢(n)

J4 ,

The underlying idea of the method is that as long as the flow is
open there is not a typical length scale.

s
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2D plumes

The profiles of velocity and charge are given by the solution of

12 4
11 "o T2 —
"+ 5 ff 5f g 0
fg+fg = 0
along with the boundary conditions

f=f=g'=0 at n=0
f=0 for n— oo

/ fgdn = 1
The second equation and the boundary conditions imply that
g=0

exceptatn =20
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Singularity at the origin

The charge profile can be expressed:

a(n) = god(n)
Integrating between 0 and 0™

4
f”/+ %ff” _ 5/:/2 —g= 0

gives a new boundary condition

f(0M)f"(0%) + % =0

=
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Equivalent problem

The profile of velocity is solution of

12 4
ney T 7f/2 _
7+ 5 5 0
with boundary conditions
f(OH)f"(01) + % =0
f07) = 0
fl(co) = 0
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2D plumes

Velocity profile

Velocity profile of a 2D EHD plume u“w‘
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Comparison with a thermal plume

For a thermal plume the second equation is

g’ + PG +1g) =0

whose solution is

(1) = 9@ oxp— (2Pr [ f(s)as)

@ Thermal plumes in the limit of infinite Prandtl number are
similar to EHD plumes.

@ The thickness of the charge region plays the role of the
thickness of the thermal layer.

=
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Equations

oruy  Oruy 0
0z o
6UZ 8Ur v o aUz 1
YHz - 22 (224 _gE
Y27 T U ar rar(rar)+pqz
oq oq
U,E + UZ& =0



EHD flows
EHD plumes

Axisymmetric plumes

Boundary conditions

u _0Ouz _9q _
"o or
u,=q=0 for r— oo

0 at r=0

To these conditions the constancy of the electric current on any
section of the flow must be added:

J= 27r/ quzrar
0

=
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Similarity method

Introducing the stream function V:
1

1
ur = —FG\U/éz U, = FG\U/ar
Following a similar procedure gives
JE \"* r
= (27rpu3> z1/2

Vv = 4uzf(n)

The exponents of the scaling laws are different

@ 1 ~ x/z%/5 for 2D plumes
@ 1 ~ r/z'/2 for axisymmetric plumes

#
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The profiles of velocity and charge are given by the solution of

=1 (F
S (E) s -
n n n

fg+fg = 0

along with the boundary conditions

o1

)=, al'=g=0 at =0

(

f/
—=g=0 for n— o0

n
/ ffgdn = 1
0

=
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Axisymmetric plumes

Singularity at the origin

@ A delta function does not give a finite velocity.
@ In the thermal problem the velocity at the axis diverges as

!
;(n =0) ~VInPr
Therefore, for axisymmetric EHD plumes it is

L, (1=0)= In(—a?)

with a the thickness of the charged layer in n coordinates.

@ Unlike the 2D case, the velocity at the axis of axisymmetric
plumes depends on the thickness of the charged layer.
However, this dependency is very weak

#
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Introduction

Experimental setup

v

Olive oil (ohmic) at 10.75 kV

Experimental set up

s
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Silicone oil (non ohmic) at 5 kV Silicone oil (non ohmic) at 6 kV

Differences

@ Ohmic regime — large convection cells (Rose-Window
instability)

@ Non-ohmic regime — two different patterns coexist

%
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Instability mechanism for Rose-window pattern

air

L |

Simplified configuration
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Instability mechanism for Rose-window pattern

—>>

Electric pressure onto the surface
(ohmic behavior)
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Instability mechanism for Rose-window pattern

R i e T

Electric field for an unperturbed
interface

s
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Instability mechanism for Rose-window pattern

PR R Ap

‘ T+ + 4+ Tt

—+

Electric field (perturbed)

s
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Equations in the air region

2, __4
v¢_ 607
aq B

with J = gK,E
~Vp+ page; +qE =0,

Air motion is neglected
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Equations for the liquid region (Ohmic regime)

V2¢ =0,

V-d=0
with d = oE

V-u=0,

ou
pi(o; +Uu-Vu) = -Vp+ pge; +nVu

ot
no electric body force .
U
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Boundary conditions at the electrodes

p=V at z=-L,
q=q at z=-L,
p=0 at z=4d,
u=0 at z=d.

7
charge injection
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Boundary conditions at the interface (Ohmic
regime)

[E] xn=0, [¢E]-n=(s.

0
SF Vs (qsu) + 9] -n — [qu] -n =0,

of
_a‘{'uz‘*’uv‘gf:o,
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Electric stresses

air air
v E E
~<— —>
m
normal stresses tangential stresses

Continuity

nt-(Vu+VuT>-n+qu-t:0,

—[p] +nn- (Vu+VuT) N+ [e(E-n)2 —
[%eEZ] —v(Vs-n)=0.
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Equations and boundary conditions for the
non-Ohmic regime

5t +V-Jd=0,
where J = g(K/E + u).
ou >
(E—FU Vu) = —-Vp + p,ge; + nV-u + qE.
[€E] -n=0

W] -n—[qu]-n=0
nt-(Vu+VuT>-n:0.

=
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Differences between both models

Ohmic Non-Ohmic
Electric current J=0E J = gKE
Volume force 0 gE
Surface charge density [E] n=gqgs | [tE] -n=0
Tangential stress at the interface gsE -t 0
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Stability study

¢ = ¢s+5¢
6 = 9g(z)exp(wt)exp(i(kxX + kyy))

@ Ohmic case: set of 9 first order linear differential equations
with 10 boundary conditions.

@ Non Ohmic case: set of 10 first order linear differential
equations with 11 boundary conditions.
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Results

60 T

50

40- unstable unstable

20

o .
10 10 10* 10 10
a(pS/m)

Stability diagram for an Ohmic liquid as a function of the conductivity @g
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ut2

02 I I
0

0.5 1 1.5 35 4

N+
I
2
3]

2
Stability parameter U = % as a function of the wavenumber (Ohmic
case). "
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101 .
Rose-window instability
gl ]
S:’ [+ unipolar injection instability
4 L 4
2 L
0 1 2 3 4 5 B 7
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Numerical results

Conclusion

e The mathematical equations of EHD flow are well
established and tested.

@ Semi-analytical methods help to understand the
underlying physical mechanisms.

@ The numerical resolution of EHD flows require
algorithms that avoid numerical diffusion.
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