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Figure: Geometrical configuration
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Figure: Atten and Lacroix 1978



EHD flows

Electroconvection in a liquid layer subjected to unipolar injection

Mathematical model

Equations

An incompressible dielectric liquid of negligible conductivity.

∇2Φ = −q
ε

∂q
∂t

+∇ · j = 0

∇ · u = 0

ρ

(
∂u
∂t

+ u · ∇u +∇p
)

= η∇2u + qE

where j = q(K E + u− D∇q) and E = −∇Φ.
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Boundary conditions

The electric boundary conditions are:

Φ(z = 0) = V
Φ(z = d) = 0
q(z = 0) = q0

The mechanical boundary conditions are

u = 0 at z = 0,d
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Non-dimensional equations

∇2Φ = −q
∂q
∂t

+∇ · (q(E + u)− α∇q) = 0

∇ · u = 0
T

M2

(
∂u
∂t

+ u · ∇u +∇p
)

= ∇2u + TqE

with the boundary conditions:

Φ(z = 0) = 1
Φ(z = d) = 0
q(z = 0) = C

u = 0 at z = 0,d
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Non-dimensional parameters

T =
εV
kη
.

M =
√
ε/ρ/K . The quantity

√
ε/ρ is known as the

Electrohydrodynamic mobility.
C = q0d2/εV . Recall that εV/d2 existing on the electrodes
as a consequence of the applied voltage.
α = D/KV . Einstein’s relation implies
D/K = kBΘ/e ∼ 0.025 V at room temperature. Therefore,
α = 0.025/V .
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Charge and field distribution in the hydrostatic state

E0z =
√

2j(z + b)

q0 =

√
j

2(z + b)

The electric boundary conditions give:√
j((1 + b)3/2 − b3/2) =

3
2
√

2
2bC2 = j

Theses two equations provide the current density for every
value of C.
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The current density is a function of the injection
level

Figure: Current density as a function of injection level.
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Weak and strong injection limits

C →∞

E0z =
3
2
√

z

q0 =
3

4
√

z

j =
9
8

C << 1

E0z = 1− C
2

+ Cz + O(C2)

q0 = C − C2z + O(C3)

j = C + O(C2)
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Perturbation of the hydrostatic state

Φ = Φ0 + δφ

q = Q0 + δq
p = p0 + δp

u

Neglecting non-linear terms yields:

∇2δφ = −δq
∂δq
∂t

+∇ · (δqE0 + Q0δE + Q0u) = 0

∇ · u = 0
T

M2

(
∂u
∂t

+∇δp
)

= ∇2u + T (Q0δE + δqE0)
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Perturbation of the hydrostatic state

Eliminating the pressure term by taking twice the curl of
equation (33). Only the z-component of the velocity is needed,
which is:

T
M2

∂∇2uz

∂t
= ∇4uz + T∇2

s(
dΦ0

dz
∇2δφ− d3Φ0

dz3 δφ)
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Normal modes

Introducing normal modes:

uz = u(z)ei(kx x+ky y)est

δφ = g(z)ei(kx x+ky y)est

the equations become:

T
M2 s(

d2u
dz2−k2u) = (

d2

dz2−k2)2u−k2T (
dQ0

dz
g−E0(

d2

dz2−k2)g)

−s(
d2g
dz2 − k2g)− dQo

dz
dg
dz
− 2Q0(

d2g
dz2 − k2g)−

E0
d
dz

(
d2g
dz2 − k2g) +

dQ0

dz
u = 0
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Boundary conditions

The boundary conditions are expressed in terms of u and g in
the following way:

u(0) = 0
du
dz

(0) = 0

u(1) = 0
du
dz

(1) = 0

g(0) = 0
g(1) = 1

d2g
dz2 (0) = 0
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Analytical approximative solution for weak injection

The equations simplify for C << 1 and (s = 0).
With E0 = 1 and Q0 = C − C2z.

(
d2

dz2 − k2)2u = k2T δq

d
dz
δq − C2u = 0

where δq = −(d2g/dz2 − k2g).

The second equation reveals the instability mechanism.
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Galerkin method

Propose a function:

u(z) = z2(1− z)2

that fulfills the boundary conditions for u.
The second equation gives:

δq = C2(
z3

3
− z4

2
+

z5

5
)

Multiplying the first equation by u and integrating between 0
and 1: ∫ 1

0
u(

d2

dz2 − k2)2u dz = k2T
∫ 1

0
uδq dz
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Galerkin method

For u(z) = z2(1− z)2 this equation becomes:

TC2 =
20
7

k2 +
120

7
+

1440
k2

This function has a minimum at k = 4.74 for which TC2 = 197.
The exact values, determined by numerical methods, are
k = 4.57 and TC2 = 221.
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Numerical solution

We have a seventh order set of homogenous ordinary linear
differential equations with non-constant coefficients. This
problem was solved by Atten and Moreau by advanced
mathematical methods.
Nowadays it can be efficiently solved by numerical algorithms
commercially available. I have used the function bvp4c,
available through version 6.1 of Matlab
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The resolution provides T as a function of k

Figure: T as a function of k .
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For every value of C there is a minimum value of T

Figure: Linear stability threshold Tc as a function of injection level C.

For strong injection the instability appears at given voltage.
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The charge conservation equation is a first order
hyperbolic equation

∂q
∂t

+∇ · (q(E + u)) = 0

Taking into account that ∇ · E = q and ∇ · u = 0 it can be
written:

∂q
∂t

+ (E + u) · ∇q = −q2

This is a first order partial differential equation.
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It is equivalent to the set of ordinary differential equations:

dq
dt

= −q2

dx
dt

= ux + Ex

dz
dt

= uz + Ez

The solution of the first equation is

q(t) =
q0

1 + q0t

The value of q at a given point is determined by the
characteristic line connecting that point to the boundary.
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Numerical diffusion

The origin of numerical diffusion can be understood from a
simplify analysis. Consider the one dimensional equation:

∂q
∂t

+
∂uq
∂x

= 0

Assuming u constant and u > 0, typical finite-difference upwind
discretization of this equation in a mesh {xi}i=1,ldots,m is:

qt+∆t
i = qt

i −
uδt
δx

(qt
i − qt

i−1)

A power expansion gives:

qt+∆t
i = qt

i +
∂qi

∂t
∆t +

1
2
∂2qi

∂t2 (∆t)2 + O(∆3t)

qt
i−1 = qt

i −
∂qi

∂x
∆x +

1
2
∂2qi

∂x2 (∆x)2 + O(∆3x)
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Taking ∂/∂t in the original equation, with u constant, is

∂2q
∂t2 + u

∂2q
∂x∂t

= 0

Collecting the terms we get:

∂q
∂t

+
∂uq
∂x

= αN
∂2q
∂x2 + O(∆2t ,∆2x)

with
αN =

1
2

u∆x(1− u∆t
∆x

)

The numerical errors behave diffusively.
For ∆x ∼ 1/100, u ∼ 1 and ∆t ∼ 1/200 is αN ∼ 2.5× 10−3.
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EHD plumes

Assumptions

The electric field is consider to be constant
E = E0ez = (V/d)ez .
Charge diffusion and drift are neglected ( u >> KE ).
The structure of the flow is that of a boundary layer flow. In
this case this implies neglecting ∂2u/∂z2 in front of
∂2u/∂x2.
The flow is steady.
The pressure is constant. This will not be the case if
recirculation or wall effects are not negligible.
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Equations

∂ux

∂x
+
∂uz

∂z
= 0

ux
∂ux

∂x
+ uz

∂uz

∂z
= ν

∂2ux

∂x2 +
1
ρ

qEz

ux
∂q
∂x

+ uz
∂q
∂z

= 0
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Boundary conditions

ux =
∂uz

∂x
=
∂q
∂x

= 0 at x = 0

ux = q = 0 for x →∞

The electric current through any section is invariant:

J =

∫ ∞
−∞

quz dx

To fix J is equivalent to assign a level of injection to the injector.
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Similarity method

Basic idea
If they are conveniently scaled, the velocity and charge
profile have the same form at every section.

Using the stream function Ψ(x , z):

ux = −∂Ψ/∂z uz = ∂Ψ/∂x

We look for a solution of the type:

η = c(z)x , Ψ = νd(z)f (η), q = a(z)g(η)

.
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Similarity method

Chosing the constants appropriately

η =

(
JE

16ρν3

)1/5 x
z2/5

Ψ = 4ν
(

JE
16ρν3

)1/5

z3/5f (η)

q =

(
ρJ4

64ν2E

)
z−3/5g(η)

The underlying idea of the method is that as long as the flow is
open there is not a typical length scale.



EHD flows

EHD plumes

2D plumes

The profiles of velocity and charge are given by the solution of

f ′′′ +
12
5

ff ′′ − 4
5

f ′2 − g = 0

f ′g + fg′ = 0

along with the boundary conditions

f = f ′ = g′ = 0 at η = 0
f ′ = 0 for η →∞∫ ∞

−∞
f ′g dη = 1

The second equation and the boundary conditions imply that

g = 0

except at η = 0
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Singularity at the origin

The charge profile can be expressed:

g(η) = g0δ(η)

Integrating between 0 and 0+

f ′′′ +
12
5

ff ′′ − 4
5

f ′2 − g = 0

gives a new boundary condition

f ′(0+)f ′′(0+) +
1
2

= 0
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Equivalent problem

The profile of velocity is solution of

f ′′′ +
12
5

ff ′′ − 4
5

f ′2 = 0

with boundary conditions

f ′(0+)f ′′(0+) +
1
2

= 0

f (0+) = 0
f ′(∞) = 0
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Velocity profile

Velocity profile of a 2D EHD plume
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Comparison with a thermal plume

For a thermal plume the second equation is

g′′ +
12
5

Pr(f ′g + fg′) = 0

whose solution is

g(η) = g(0) exp−
(

12
5

Pr
∫ η

0
f (s) ds

)

Conclusion
Thermal plumes in the limit of infinite Prandtl number are
similar to EHD plumes.
The thickness of the charge region plays the role of the
thickness of the thermal layer.
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Equations

∂ruz

∂z
+
∂rur

∂r
= 0

uz
∂uz

∂z
+ ur

∂ur

∂r
=

ν

r
∂

∂r
(r
∂uz

∂r
) +

1
ρ

qEz

ur
∂q
∂r

+ uz
∂q
∂z

= 0
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Boundary conditions

ur =
∂uz

∂r
=
∂q
∂r

= 0 at r = 0

uz = q = 0 for r →∞

To these conditions the constancy of the electric current on any
section of the flow must be added:

J = 2π
∫ ∞

0
quzr dr
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Similarity method

Introducing the stream function Ψ:

ur = −1
r
∂Ψ/∂z uz =

1
r
∂Ψ/∂r

Following a similar procedure gives

η =

(
JE

2πρν3

)1/4 r
z1/2

Ψ = 4νzf (η)

q =
J

2πνz
g(η)

The exponents of the scaling laws are different

η ∼ x/z2/5 for 2D plumes
η ∼ r/z1/2 for axisymmetric plumes
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The profiles of velocity and charge are given by the solution of

f ′′′

η
+

f − 1
η

(
f ′

η

)
+ g = 0

f ′g + fg′ = 0

along with the boundary conditions

(
f ′

η
)′ =

f
η
− 1

2
f ′′ = g′ = 0 at η = 0

f ′

η
= g = 0 for η →∞∫ ∞

0
f ′g dη = 1
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Singularity at the origin

A delta function does not give a finite velocity.
In the thermal problem the velocity at the axis diverges as

f ′

η
(η = 0) '

√
ln Pr

Therefore, for axisymmetric EHD plumes it is

f ′

η
(η = 0) '

√
ln(−a2)

with a the thickness of the charged layer in η coordinates.

Conclusion
Unlike the 2D case, the velocity at the axis of axisymmetric
plumes depends on the thickness of the charged layer.
However, this dependency is very weak
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Introduction

Experimental setup

Experimental set up

Olive oil (ohmic) at 10.75 kV
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Silicone oil (non ohmic) at 5 kV Silicone oil (non ohmic) at 6 kV

Differences
Ohmic regime −→ large convection cells (Rose-Window
instability)
Non-ohmic regime −→ two different patterns coexist
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Instability mechanism for Rose-window pattern

Simplified configuration
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Instability mechanism for Rose-window pattern

Electric pressure onto the surface
(ohmic behavior)
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Instability mechanism for Rose-window pattern

Electric field for an unperturbed
interface
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Instability mechanism for Rose-window pattern

Electric field (perturbed)



EHD flows

Rose-window instability

Mathematical model

Outline
1 Electroconvection in a liquid layer subjected to unipolar

injection
Mathematical model
Linear stability analysis
Numerical difficulties in the simulation of the
electroconvection of finite amplitude

2 EHD plumes
Assumptions
2D plumes
Axisymmetric plumes

3 Rose-window instability
Introduction
Instability mechanism
Mathematical model
Numerical results



EHD flows

Rose-window instability

Mathematical model

Equations in the air region

∇2φ = − q
ε0
,

∂q
∂t

+∇ · J = 0.

with J = qKaE
−∇p + ρagez + qE = 0,

Air motion is neglected
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Equations for the liquid region (Ohmic regime)

∇2φ = 0,

∇ · J = 0

with J = σE
∇ · u = 0,

ρl(
∂u
∂t

+ u · ∇u) = −∇p + ρlgez + η∇2u
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Boundary conditions at the electrodes

φ = V at z = −L,
q = q0 at z = −L,
φ = 0 at z = d ,
u = 0 at z = d .
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Boundary conditions at the interface (Ohmic
regime)

[E]× n = 0, [εE] · n = qs.

∂qs

∂t
+∇s · (qsu) + [J] · n− [qu] · n = 0.

−∂f
∂t

+ uz + u · ∇sf = 0,
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Electric stresses

normal stresses tangential stresses

Continuity

η t ·
(
∇u +∇uT

)
· n + qsE · t = 0,

−[p] + η n ·
(
∇u +∇uT

)
· n +

[
ε(E · n)2

]
−[1

2εE
2]− γ (∇s · n) = 0.
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Equations and boundary conditions for the
non-Ohmic regime

∂q
∂t

+∇ · J = 0,

where J = q(KlE + u).

ρl(
∂u
∂t

+ u · ∇u) = −∇p + ρlgez + η∇2u + qE.

[εE] · n = 0.

[J] · n− [qu] · n = 0.

η t ·
(
∇u +∇uT

)
· n = 0.
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Differences between both models

Ohmic Non-Ohmic
Electric current J = σE J = qKlE
Volume force 0 qE

Surface charge density [εE] · n = qs [εE] · n = 0
Tangential stress at the interface qsE · t 0
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Stability study

φ = φs + δφ

δφ = g(z) exp(ωt) exp(i(kxx + kyy))

Ohmic case: set of 9 first order linear differential equations
with 10 boundary conditions.
Non Ohmic case: set of 10 first order linear differential
equations with 11 boundary conditions.
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Results

Stability diagram for an Ohmic liquid as a function of the conductivity
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Numerical results

Stability parameter U = ε0ρl V
2

η2 as a function of the wavenumber (Ohmic
case).
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Numerical results

Stability parameter as a function of the wavenumber (non Ohmic case).
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Numerical results

Conclusion

The mathematical equations of EHD flow are well
established and tested.

Semi-analytical methods help to understand the
underlying physical mechanisms.

The numerical resolution of EHD flows require
algorithms that avoid numerical diffusion.
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