A preliminary plasma based flow control simulation study with 'Oracle3D'

U. Seth, F. J. Duran-Olivencia, P. Traoré, P. Vazquez, E. Moreau

Outline

Oracle3D

Plasma based flow control – What, why and how ?

- DBD actuators
- Related Flow Phenomena

Numerical Modelling of DBD actuators

> Model, Mesh, Boundary conditions.

- Results
- Concluding remarks

Oracle3D

- In-house code -- EFD group, Institut Pprime, Poitiers
- 2D/3D, Incompressible Navier-Stokes DNS Solver
- Finite-Volume
- SIMPLE algorithm
- Multi-block geometry
- Parallelised with MPI
- Extensively validated and published
 - **Near Future Objectives**
 - Three species plasma model
 - > All speed flow solver
 - Large Eddy Simulation (LES)

Dielectric Barrier Discharge (DBD) Plasma Actuator

Courtesy : N. Benard et al. (2014), Exp. Fluids

Plasma Based Aerodynamic Flow Control

Courtesy : Kozo Fujii (2013), Phil. Trans. R. Soc. A

Plasma Based Aerodynamic Flow Control

Courtesy : P. Audier , EFD group, Institut Pprime

Why DBD plasma actuators for flow control ?

- Simplicity of implementation
- Small, inexpensive, no moving parts, low mass
- Fast response
- Efficient force production (Normal & Tangential)
- Moderate cost of energy input
- Desirable performance at atmospheric conditions
- Complex unsteady flow actuation etc.

Numerical modelling of DBD actuators

- □ The Suzen-Huang body force model
- Conditions for our simulations
- Input parameters

The Suzen-Huang model

(Ref. Suzen-Huang, AIAA, 2005)

Electric *Potential* = $\Phi + \varphi$

• Φ = potential <u>due to external electric</u> field $\nabla . (\varepsilon_r \nabla \Phi) = 0$ **Assumptions** A1. Weakly ionized gas A2. λ_D is small A3. ρ_c is not large

• $\varphi = potential due to net charge density in plasma$

$$\nabla \cdot (\varepsilon_r \nabla \varphi) = -(\frac{\rho_c \lambda_D^2}{\varepsilon_0})$$
$$\varphi = (-\frac{\rho_c \lambda_D^2}{\varepsilon_0})$$
$$\nabla \cdot (\varepsilon_r \nabla \rho_c) = \frac{\rho_c}{\lambda_D^2}$$
Here - ε_r = relative permittivity of the medium

 $\rho_c = \text{charge density}$ $\lambda_D = \text{the Debye Length}$ 9

The DBD Model

Electrod length = 10mm Gap between electrodes = 0.5 mm Height of electrodes = 0.25 mm Thickness of dielectric b/w electrodes = 0.125 mm

Boundary conditions (Electrical Potential Φ)

Boundary conditions (Electric Charge density ρ_c)

The block-structured orthogonal grid

More than 2.5 million control volumes

Input Parameters

Some parameters taken for the current problem

Quiescent Air

Maximum charge density $\rho_c^{max} = 0.0008 \text{ C/m}^3$ Amplitude of AC potential $\Phi^{max} = 5.0 \text{ kV}$ Frequency of applied AC voltagef = 4.5 kHzThe Debye Length $\lambda_D = 0.001 \text{ m}$ Density of air = 1.225 kg/m³Viscosity of air = 1.85 * 10⁻⁵ kg/(m.s)

RESULTS

- □ 3 Dimensional results
- □ Comparison of 3D results with 2D results

Results (Electrical Potential)

Results (Charge density)

Velocity profiles

Velocity magnitude Profiles

Maximum Velocity attained

@ t = 37.5 m sec

Vorticity magnitude

Force Vectors

Phd. Thesis, Kengo Asada, 2014 University of Tokyo

26

Comparison 3D & 2D results

(The velocity components)

Comparison 3D & 2D results

Conclusions

- Effects of DBD plasma actuator were well modelled with 'Oracle3D'
- Good agreement between 'Oracle3D' results and Comsol 2D results was observed
- For this configuration and parameters ($\Phi^{max} = 5.0 \text{ kV \& f} = 4.5 \text{kHz}$) the flow essentially is 2 dimensional .

THANK YOU ALL.