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One of the important eventg in hig life wag meeting
Pierre Atten, who became hig cloge friend and
ingpired in him a love for electrohydrodynamics.

He worked in varioug fielde of gcience:
| Electrohydrodynamics,
2 (Bag digcharges at atmogpheric presaure,
3 Cohegive granular materials.

Noteworthy regults include:

-

| Galilean limite of electromagnetism. ;*

2 Temperature equation and entropy production in electrohydrodynamics. %;

3 Self-gimilar golution for two-dimengional and axigymmetric plumeg. ==

4 Seminal works on numerical gimulation of electrohydrodynamic flows.

5 Phygical mechanigm of electrothermohydrodynamic ingtabilities. Antonio Castellanog Mata
6 Energy cascade in electrohydrodynamic turbulence. (07.03.1947 - 27.01.2016)

7 Stabilization of dielectric liquid bridges by ac electric fields.

8 Theory of AC electroogmogie and electrothermal flows in microgystemg.

9 Abgence of inertial regimeg in fine powderg.

[O Model of elastoplagtic contact between two powder particles.

I Microstructure characterization of fluidized bed of fine particles: aggregation, golidlike-fluidlike trangition, fluctuations, influence of
electromagnetic fields.


https://en.wikipedia.org/wiki/Electrohydrodynamics
https://en.wikipedia.org/wiki/Electric_discharge_in_gases
https://en.wikipedia.org/wiki/Granular_material
https://en.wikipedia.org/wiki/Galilean_electromagnetism
https://en.wikipedia.org/wiki/Antonio_Castellanos_Mata
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Galilean Electromagnetism.

M. L BELLAC
Physique Théorique - Nice (")(**)

| J._—M. LEVY-LEBLOND
* Physique Théorique - Paris (")

(ricevuto il 6 Novembre 1972)

Summary. — Consistent nonrelativistic electromagnetic theories are
investigated by stressing the requirements of Galilean relativity. It is
shown that Maxwell’s equations admit two possible nonrelativistic limits,
accounting respectively for electric and magnetic effects. A Galilean
theory is then built which combines these two theories and can embody
a large class of experimental facts. As a result, several so-called 4 rela-
tivistic » effects are shown to necessitate a re-appraisal, or at least, a
more careful discussion. It is finally shown precisely how the old-fashioned
formulation of the electromagnetic theory in terms of field strengths and
field excitations clashes with Galilean relativity in ite constitutive equa-
tions only, leading to the idea of a privileged frame of reference (the
ether) or to Einsteinian relativity!

M. Le Bellac and J-M. Lévy-Leblond, Galilean Electromagnetiem, [l Nuovo Cimento, 148, 217 (|

|

973)



Galilean Limits Of Electromagnetism
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Personal Reminiscences
| wag trained both in MHD and EHD in Grenoble, France during the yeare [997-2000
both in the engineer schools of Physics/Hydraulies and in the University.
In MHD, [ followed the lectures of Profeesor René Moreau who gave to me hig lecture noteg
from the Summer School in Leg Houcheg on EHD in the early 70’ !
In EHD, [ followed the lectures of Nelly Bonifaci, a colleague of Pierre Atten.
| wag abgolutely agtonighed to gee that two digtinet sete of Maxwell's equationg
were uged separately in EHD and MHD within the approximation of the go-called quasi-statics.
In France, the quagi-gtatice approximation wag usually (but wrongly) thought as a eynonym of only MQS.
[ did my Bhd Thegig in ESPCI during the yeare 2000-2003 with J osé-Eduardo Wesfreid,
a friend of Antonio on the Bhygice of Granular Matter.
| wag aleo working with Etienne Guyon on the analogy used by Maxwell between fluide mechanicg (Galilean covariant) and
electromagnetiem (Lorentz covariant) : how can there be an analogy whereag the kinematice are different ?
| read with very much interest the lecture notes of Antonio on EHD and the paper by Le Bellac and Lévy-Leblond
on Galilean Electromagnetiem during thig period : Maxwell’s equationg were aleo compatible with Galilean Physics !
In ESPCI, [ met and digcugsed with Antonio who came for a geminar
on granular matter with electrogtatice effecte.
We barely discuseed of Galilean Electromagnetiem but latter [ sent him my papers on the subject
where he wag duly quoted ag a source of ingpiration.
Antonio seemed to have been unaware of the work of Le Bellac and Lévy-Leblond

on Galilean Electromagnetiem that he never quoted ag far ag | know.

He never digcugged the Galilean limits of neither the scalar and vector potentials nor the gauge conditions.



Antonio Castellanos as a Reader of James Meleher

‘

CISM COURSES AND LECTURES NO. 380
INTERNATIONAL CENTRE FOR MECHANICAL SCIENCES

This book may be consgidered as
1 ECTROHYDRODYNAMICS complementary to the excellent treatment of
EHD made in the classical book “Continuum
Electromechanics” by Melcher, in that care
hag been taken to avoid overlapping of the
o subjects. [n case a topic ig treated in both texts,
ANTONIO CASTELLANOS the reaults presented in the book by Melcher gerve
a¢ an introduction to the more advanced

treatment pregented in thig book.

Jameg R. Melcher, Continuum Electromechanies.
# Springer.Verlag Wico GmbH Cambridge, MA: MIT Oregg (198]).

-

A. Cagtellanog. Bagic concepte and equationg in electrohydrodynamice (Chapterg [=4). In: A. Cagtellanog
(editor), Electrohydrodynamics, Springer Verlag, Wien ~ New York (1998)



To find the first order contributions, these equations with n=l are solved with the zero order
solutions making up the right-hand sides of the equations playing the role of known driving functions.
Boundary conditions are satisfied by the lowest order fields. Thus higher order fields satisty homo-
geneous boundary conditions.

Once the first order solutions are known, the process can be repeated vith these forming the
“drives"” for the n=2 equations.

In the absence of loss effects, there are no characteristic tizes to distinguish MQS and EQS
systems. In that linit, which set of normalizations {s used is & matter of convenience. 1If & situa-
tion represented by the left-hand set sctually has an EQS limit, the zero order laws become the quasi-
static lavs, But, if these expressions are applied to a situation that is sctually MQS, then first-
order terns must be calculated to find the quasistatic fields. If more than the one characteristic
tinme Tem is involved, as is the case with finite T, and Ty, then the ordering of rate paraceters can
contrtbutc to thc coavcrgcnco of the expannlon.

| ln prlctice. a foml derivation of thc quuhnuc lau. u uldoo uud Rather, iotuition and
' experience along vith comparison of critical time constants to relevant dynamical times i{s used to

¥ {dentify one of the two sets of zero order expressions as appropriate. But, the use of normalizations
b to identify critical parameters, and the notion that characteristic times can be used to unscramble
| dymucal proceueu. vﬂl be und exten.lvaly ln tho duptﬂ'. to !ollw.

Uuhin tho frasevork of qunhuuc clactrodytunlco. tha uunomluod fonn o( lqc.l)-l)
comprise the “exact™ field lavs., These equations are reordered to reflect their relative importance:

Electroquasistatic (EQS) Magnetoquasistatic (MQS)
v-cof . -9F ¢ Py Vxiie 3‘ (23)
vxtwo Vop = oy ® (24) e a n
30, Ou Ou M
V-}t-k-st—to “:.-1— 1—-99:01!') (25)
g MQS Syst

v-i-1f+-‘:—+g%«v;<$:3) vJ‘-o (26) Q gg ems
eu = =9 p i Ve E « -0F + 0 an

The conduction current 3{ has been reintroduced to reflect the wider range of validity of these Of M axwe‘l
n

equations than might be inferred from Eq. 1. With different conduction models will coce different

characteristic times,exenplified in the discussions of this section b; Te #nd T,. Matters are more
complicated if fields and media interact electromechanically. Then, V is determined to some extent
ot least by the fields thenselves and cust be treated on & par with the field variables. The result

eoleus by e il Bemeives o Equaﬁong

The ordering of the quasistatic equations emphasizes the instantanecus relation between the
respective dominant sources and fields. Given the charge and polarization densities in the EQS system,
or given the current and magnetization densities in the MQS system, the dominant fields are known and
are functions only of the sources at the given instant in tise.

The dynamics enter in the EQS system with conservation of charge, and in the MQS system with
Faraday'gy lav of induction. Equations 26a and 27a are only needed {f an after~the-fact determina-
tion of ¥ is to be made. An example vhere such a rare interest in H exists is in the scall mag-
netfic field induced by electric fields and currents within the human body. The distribution of in-
iomal fields and hence currents is determined by the first three EQS equations. Given t. ?, and

¢, the remaining two expressions deternine H, In the MQS syste=m, Eq. 27b can be regarded as an
expression for the after-the-fact evaluation of pg, vhich 4s mot usually of interest inm such syste=ms,

What makes the subject of quasistatics difficult to treat in a general way even for a systea
of fixed ohnic conductivity, is the dependence of the appropriate model on considerations not con-
veniently represented in the differential lavs, For example, a pair of perfectly conducting plates,
shorted on one pair of edges and driven by a sinusoidal source at the opposite pair, will be MQS
at lov frequencies. The sape pair of plates, open-circuited rather than shorted, will be electroquasi-
static at lov frequencies. The difference is in the boundary conditions.

Ceometry and the inhomogeneity of the medium (insulators, perfect conductors and semiconductors)
are also essential to determining the appropriate approximation. Most systems require more than one

h#fp:/ /W rle.mit.edu/ cehv/documente/ ContinuumElectromechanice-Melcher pdf
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] The most convenient normalizaction of the fields depends on the specific system, Where electro-
4 mechanical coupling is significant, these can usually be categorized as "electric-field dominated” and

; "magnetic-field domipated.” Anticipating this fact, two normalizations are now developed "in parallel,” j-l
i the first taking & as a characteristic electric field and the second taking .w'as a characteristic mag~ :
- netic field:

Eaet, Pacgh, Ve oy 5, - 203, oo, Hoaxd, Vo /oy, 3, =F 3, “
. &€, clEs, , cre, . Mt DR RS
o= B W B W~ Ee b= op -1

It might be appropriate with this step to recognize that the materisl wotion introduces a characteristic
(transport) time other than t. For simplicity, Eq. 4 takes the material velocity as being of the order
of L/t.

The normalization used is arbitrary. The same quasistatic laws will be deduced regardless of the
starting point, but the normalization will deternine whether these laws are "zero-order” or higher order
in a <sense to now be defined,

The normalizations of Eq. 4 introduced into Egs. 2.2.1-5 result in

VEe-0.P+ Pg VE 9P Pg (5 The

LB B 9.8 - -0.H )

vx'ﬁ-'—:—oi+3v+g;f-+%+vx(fx3) Vxﬁ-:—'oi+3v+3%%+%%*9x(;!:)](z) N l. =
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f

vota I [, 2 e it o Droeedure to

vhere underbars on equation numbers are used to indicate that the equations are pormalized and

1= uooozz, T, F coloo

N S | - Derive EQS

In Chap. 6, 7_ will be identified as the magnetic diffusion time, while in Chap. 5 the role of the
ga,“ka N T A charge-relaxalion tinc Te is developed. The tice required for an electromagnetic plane vave to propa-
gate the distance £ at the velocity ¢ 4s Tep. Given that there is just one characteristic length, an

there are actually only two characteristic tizes, because as can be seen from Eq. 10

VT . an

Unless T, and Ty, and hence Toy, are all of the same order, there are only tvo possibilities for the

relative magnitudes of these tinmes, as summarized in Fig. 2.3.1.

—_—
|/\|
-~

T T | B T
Tl’l Tll! T. T ! {-. ‘r.l'll rll! L]
electroquasistatics magnetoquasistatics

Fig. 2.3.1. Possible relations between physical time constants on a time
scale t which typifies the dynanics of interest.

R0/ 7w re.mit.edu/ cehv/documente/ContinuumElectromechanice-Melchrpdf
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The Energetics Approach to EQS and MQS 3 la Castellanos

To choose a scale to nondimensionalize the EM fields we need to compare the relative
magnitude of the electric to the magnetic field. For radiation fields, such as plane waves, it
is well known that E' = ¢B with E the magnitude of the electric field, c the velocity of light,
and B the magnitude of the magnetic field. Also, it is well known from relativistic electro-
magnetism that, E? — ¢*B?, is a Lorentz invariant that may be positive, zero or negative.
Alternatively, for those people not familiar with relativity, it may be easier to think in terms
of energies. We have

eE*/2  E?
B?2/2u  2B?

We recover again the three previous cases, which now correspond to an electrically dom-
inated system, a radiation field, and a magnetically dominated system, when this ratio is
greater, equal, or lesser than one. We neglect the particular case in which we may have
an electrostatic field and a magnetostatic field, both decoupled from each other. In the first
case, denoted as Electroquasistatics, and in the third case, named Magnetoquasistatics, it is
possible to simplify the Maxwell’s equations. In both cases all the intrincacies due to electro-
magnetic wave phenomena and radiation may be disregarded, and as a consequence a great
degree of simplification is achieved. Moreover, in the two latter cases it is possible to take
the limit, ¢ — o0, in a consistent way, thus obtaining two different Galilean limits to the
electromagnetic field, with corresponding field transformations specific to each case.

(1.13)

A. Cagtellanog. Bagic concepte and equationg in electrohydrodynamics (Chapters [=4). [n: A. Cagtellanog
(editor), Electrohydrodynamice, Springer Verlag, Wien ~ New York (1998)



1.3 Electroquasistatics in moving fluids

In this section we elaborate the case of fluids subjected to electroquasistatic fields a little
further. Consider first that the fluid is subjected to a time varying electric field of frequency
w. As discussed in the previous section, a necessary condition to reduce Maxwell’s equations
to the set of electroquasistatics equations, is that 7,,,, < 7 is true where 7 is any characteristic
time associated with electrical or mechanical processes taking place in the fluid. In particular,
for a time varying electric field we may take as 7 the period, T, of the electric field, and

therefore we must have

LW, (1.58)

cT ¢

The condition w < (c¢/l) ensures that the magnetic field generated by the displacement
current, which is of order By ~ uclwE,, satisfies automatically the condition ¢By < E,.

The second condition that must be met by the physical system in order to be quasielec-
trostatic, is that the magnetic field due to the current density in the system, regardless of its
origin, i. e. injection, dissociation or current due to particles, must also satisfy the condition
cBy € Ej. Since from the fourth Maxwell’s equation the scale for B due to the current
density is By = ulJ,, we have

CBO CI[JJ()
= 59
and consequently
1
Jo & Eoi/i-. (1.60)
ul

For typical systems in the laboratory | ~ 10~?m, u =~ po ~ 10" *Hm~'and & ~ 10~"'"Fm™/,
and we must have J, <« 3FE,. In insulating liquids this condition is amply satisfied in
practical situations as J; is in the range of microamperes per square centimetre, and E, is
several kV per centimeter.

To conclude, in Electrohydrodynamics, Maxwell equations reduce to

V:D =g, VxE=0, %+V-J=O, (1.61)
with the magnetic field determined by the equations
V-B=0, VxH=J+%. (1.62)
I — e

A. Cagtellanog. Bagic concepte and equationg in electrohydrodynamice (Chapters [-4). In: A. Cagtellanog
(editor), Electrohydrodynamice, Springer Verlag, Wien ~ New York (1998)



Characteristic times
T = £fC
7. = €¢/o  the charge relaxation time

. = pol? the magnetic diffusion time,

Tem = VTeTm

Full set of Maxwell's
equations

the light transit time in the medium (here, 7., < 7)

Ten

i | v
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T

: Full set of Maxwell's equations
T
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T < Tem
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Full set
EQS
MQS

Statics

T < Tem
Tem <T < 58x 107 's -
Tem <T<3x107s

T>3x10"7s
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Orders of magnitude
E = e&, with e a reference quantity and £ a non-dimensional vector
T, a characteristic time constant ¢, a characteristic spatial dimension,

¢+ =2 /== s the constitutive length (n medium impedance)

v = é velocity of the phenomenon in the medium or of the medium ‘
c= ﬁ velocity of light in the medium

0,FE approximatedby e/¢, O,F approximatedby e/7

In the empty space, two velocities and scalings appearing :

VxE=-0B — %Ng —  e~vb ('vzé)
VxH=0D — %f\/% — b~ e (c= lioé)
Ho T ’
: e =ch : e = vb
v~ cVields — ,and v < cylelds{ _ v, thus v = ¢, wrong !
- 2

This means that for v < ¢, the two scalings are not simultaneously valid
thus Faraday and Ampere laws cannot be coupled

To choose the scaling, look at the field sources (charges or currents) !
S e—— e




Galilean limits of Maxwell equations
For fields

If J > pcthen e < ¢b, thus MQS (the dielectric effect of charges is negligible)

Galilean magnetic limit, known as MagnetoQuasiStatics (MQS),
(V x E=—-0,B,
V-B=0,

\V x H~J.

V.J=0

If J < pec, then e > ¢b, thus EQS (the conducting effect is negligible)

where v < ¢ and e ~ vb:

Galilean electric limit, known as ElectroQuasiStatics (EQS),
Vx FE~0,

V-B=0,
VxH=J+0oD,
V-D=p

Galilean stationary limit, known as QuasiStationaryConduction (QSC),
where fields exhibit no time-dependence.
S ——— —

where v < ¢ and b ~ e:




For potentials

A = aA (magnetic vector potential), V = vV (electric scalar potential)

B =V x Ayields b ~ 7 (always true)

E=—-0,A—VVyields e ~ 2+ 7 thus

eifca<V(a=5V)then (v<ec) va<V, éa <V, 2« 7s0e~ 7 (EQS).

o ifca >V (V=wva)thena > Vis compensated by v < cso ¢ ~ 7 (MQS)

For gauge conditions

In the empty space :

eifca<cvthenV - A+ é@,V =0 (Lorenz)
eifca>VvthenV-A=0 (Coulomb)

In the medium with a finite o, V-A+ pedV =—puoV (Stratton)

R ————— ==




From Stratton gauge condition with orders of magnitude ".‘

£
V'-A+:L9y = -1y,  I+11=1III

cca

Dimensionless ratios

Galilean

Galilean
Electric
Limit




oot c prc is ol Ptr. tepototc is made that t"‘qu.uuu éht. take 'h",
| same form in the prised and unprimed inercial reference frames. But, in writing the laws in the primed
[ frare, the spatial and temporal derivatives must be taken with respect to the coordinates of that ref-

| erence frame, and the dependent field variables are then fields defined in that reference frame., In
| general, these pust be designated by primes, since their relation to the variables in the unprimed frame !
is not knm o .

For the purpose of vrxun; the prtud cqutlom ol clccttodynanico in terms ot’ thc uapt!.ud co~
ordinates, recognize that

L AR
aX . =+ T 2 - 'y

' Ty P )A--s—'buv- Vx(ux) (2)
-g-"fr—(g—twﬁ-vws -g%ovoﬁg

The left relations follow by using the chain rule of differentiation and the transformation of Eq. 1.

That the spatial derivatives taken with respect to one frame must be the same as those vith respect

to the other frame physically means that a single "snapshot" of the physical process would be all

required to evaluate the spatial derivatives in either frame. There would be no way of telling which

frave was the one from which the snapshot was taken. By contrast, the time rate of change for an

observer in the primed frame is, by definition, taken with the primed spatial coordinates held fixed. g

In terms of the uxed frame coordinates, this is the convective derivative defined with Eqs. 2.4.5 e a l ean
and 2.4.6. However, V in these equations is in ;encnl a function of space and time. In the context

of this section it is ageculiud to the constant u. Thus, in rewriting the convective derivatives of
Eq. 2 the constancy of u and a vector identity (Zq. 16, Appendix B) have been used.

So far, what has been said in this section is a matter of coordinates. Now, a physically motivate
postulate {5 made concerning the electromagnetic lavs. Ioagine one electromagnetic experiment that is roce ure to
to be described from the two different reference frames., The postulate is that provided each of these
fraces is inertial, the governing laws must take the same form. Thus, Eqs. 23-27 apply with [V - V',
8( )/3t = 3( )/3c'] and all dependent variables primed. By way of comparing these lawvs to those ex-

pressed in the fixed-frame, Eqs. 2 are used to revrite these expressions in terms of the unprimed in- 5
dependent variables. Also, the moving-frame material velocity is rewritten in terms of the unprimed
frame velocity using the relation erlve

- - -

Vi my=ug 3)

Thus, the laws originally expressed inm the primed frame of reference become ' d M g
Ve B = 0.3 4+ o vxi' =3 4) a n Q
VxE =0 T it = ~Fop M (s)

3p! awE N
vy + Upp) + 5t = 0 W@ -8 x ui') . - e - 2 (6)
- uov x o’(' x v)
Vx (@ +Txc ) - T+ v-Ji =0 %))
¢:;£-+-a-i-ov x (3' 13)
Ty ' = ey i Veg B = 0. 4 ) (8)

In writing Eq. 7a, Eq. 4a is used. Similarly, Eq. 5b is used to write Eq. 6b. For the one experi-
ment under consideration, these equations will predict the same behavior as the fixed frame lavs,
Eqs. 2.3.23-27, {f the i{dentification is made:

ttp://www.rlemitedu/cehv/documents/ ContinuumElectromechanics-u e’lcﬁer.p;df
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For fields

Magnetic Limit
p=p+v-J)/c
J=UJ
B=F
E=F —-vxB
H=H'
D=D"—vxH'c
M=M
P=P +vx M/

For potentials

Magnetic Limit
A=A
Vi=V-v-A

For constitutive relations

Magnetic Limit
D' ~¢eE + (e ——)v x B

Electric Limit
p=1p
J=J —pv
B=B +vxFE'/c
E =FE
H=H +vxD
D=1
M=M —vx P
P=F

Electric Limit
A =A-— v%,
Vi=V

Electric Limit

D' ~eE




Muchag Gratiag Antonio for helping me to bridge the gap
between the separate approcheg to Galilean Electromagnetiem

of the engineerg 4 [a Melcher and of
the physicicte 2 la Le Bel
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Forty years of Galilean Electromagnetism (1973-2013)

Germain Rousseaux?
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Abstract. We review Galilean Electromagnetism since the 1973 seminal paper of Jean-Marc Lévy-Leblond
and Michel Le Bellac and we explain for the first time all the historical experiments of Rowland, Vasilescu
Karpen, Roentgen, Eichenwald, Wilson, Wilson and Wilson, which were previously interpreted in a Special
Relativistic framework by showing the uselessness of the latter for setups involving slow motions of a part
of the apparatus. Galilean Electromagnetism is not an alternative to Special Relavity but is precisely its
low-velocity limit in Classical Electromagnetism.
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Lorenz or Coulomb in Galilean electromagnetism?

G. ROUSSEAUX
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06560 Valbonne, France
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PACS. 03.50.De — Classical electromagnetism, Maxwell equations.
PACS. 41.20.-q — Applied classical electromagnetism.
PACS. 47.65.+a — Magnetohydrodynamics and electrohydrodynamics.

Abstract. — Galilean electromagnetism was discovered thirty years ago by Lévy-Leblond and
Le Bellac. However, these authors only explored the consequences for the fields and not for the
potentials. Following De Montigny et al., we show that the Coulomb gauge condition is the
magnetic limit of the Lorenz gauge condition whereas the Lorenz gauge condition applies in the
electric limit of Lévy-Leblond and Le Bellac. Contrary to De Montigny et al., who used Galilean
tensor calculus, we use orders of magnitude based on physical motivations in our derivation.
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On some applications of Galilean electrodynamics of moving bodies
M. de Montigny® /

Campus Saint-Jean and Theoretical Physics Institute, University of Alberta, Edmonton, Alberta, Canada
T6C 4G9

G. Rousseaux”
Laboratoire J.-A. Dieudonné, Université de Nice Sophia Antipolis, UMR CNRS 6621, Parc Valrose,

FO06108 Nice, Cedex 02, France q
(Received 29 March 2007; accepted 14 July 2007) ﬂ
We discuss the seminal article by Le Bellac and Lévy-Leblond in which they identified two Galilean ‘,
limits (called *“electric™ and “magnetic” limits) of electromagnetism and their implications. Recent 5
work has shed new light on the choice of gauge conditions in classical electromagnetism. We show i

that the recourse to potentials is compelling in order to demonstrate the existence of both (electric

and magnetic) limits. We revisit some nonrelativistic systems and related experiments, in the light

of these limits, in quantum mechanics, superconductivity, and the electrodynamics of continuous ;'
media. Much of the current technology where waves are not taken into account can be described in

a coherent fashion by the two limits of Galilean electromagnetism instead of an inconsistent mixture

of these limits. © 2007 American Association of Physics Teachers.
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PACS 03.50.De — Classical electromagnetism, Maxwell equations

Abstract - The Galilean constitutive equations for the electrodynamics of moving media are
derived for the first time. They explain all the historic and modern experiments which were
interpreted so far in a relativistic framework assuming the constant light celerity principle. Here,
we show the latter to be sufficient but not necessary.




§ By electroquasistatic (EQS) ‘psroxtutlm it is meant that the ordering of tizes 18 a8 to the left and
‘ that the paramcter B = (v,,/7)¢ &5 much less than unity. Note that T is still arbitrary relative to Tq. }
¥ In the magnetoquasistatic (MQS) approximation, B is still small, but the ordering of characteristic times J
i 18 as to the right. In this case, T is arbitrary relative to Ty, |

‘ To make a formal statement of the procedure used to find the quasiscatic approxismation, the normal- |
3 xzad flields and charge denslty are expandcd in povcts o( the tluc-ratc pltll.t.f 8. 2
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In the following, it is assumed that conuuuuvo lavs relate P and M to z and ll. #0 that these

densitfes are sinflarly expanded. The velocity V is taken as given, Then, the series are sub-
stituted into !q-. 5-9 and the resulting expressions arranged by factors multiplying uccndtn* e
powers of B, The "zero order" equations are obtained by requiring that the coefficients of B

vanish. These are sinply Eqs, 5-9 with § = O:
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The zero-order sclutions are found by solving these equations, augmented by appropriate
boundary conditions. If the boundary conditions are themselves time dependent, mormalization
vill turn up odditional characteristic times that must be fitted into the hierarchy of Fig. 2.3.1.
Higher order contributions to the series of Eq. 12 follow from a sequential solution of the a n
equations found by making coefficients of like powers of B vanish. The expressions resulting
from setting the coefficients of £7 to zero are:
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and hence, from Eq. 2.2.6 and hence, from Eq. 2.2.7
P =D -3 (14)

The primary fields are the same whether viewed from one frame or the other. Thus, the EQS elec-
tric field polarization density and charge density are the same in both frames, as are the MQS mag-
netic field, magnetization density and current density. The respective dynamic laws can be associated
with those field transformations that involve the relative velocity. That the free current density
is altered by the relative motion of the net free charge in the EQS system {s not surprising. But, it
is the contribution of this same convection current to Ampere's lav that generates the velocity depend-
ent coptribution to the EQS magnetic field measured in the moving fracme of reference. Similarly, the
velocity dependent contribution to the MQS electric field transformation is & direct consequence of
Faraday's law.

The transformatfons, like the quasistatic lawvs from wvhich they originate, are approximate. It
| would require Lorentz transformations to carry out a similar procedure for the exact electrodynamic
£ lavs of Sec. 2.2. The general lavs are not invariant in form to a Galilean transformation, and there-
/ in 4s the origin of special relativity. Built in from the start in the quasistatic field lavs is a

Sursary of Electroquasistatic and Magnetogquasistatic Conditfons: Table 2.10.1 sumsarizes the
junmp conditions.

Table 2.10.1. Quasistatic jump conditions; JA J= A* - 1®,
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The Range of Validity of the Galilean Limits of Electromagnetism
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EQS and MQS According to James Melcher
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Fig. 2. As the angular frequency w is raised, an electromagnetic system 1is first (a) EQS if 7, > 1, and is (b)
MQS if 1, > 7.. The representative EQS system in (a) has a voltage source driving a pair of perfectly
conducting spheres having radius and spacing with the same typical length L. The representative MQS
system in (b) has a perfectly conducting loop driven by a current source having radius and width with the
same typical length L. For quasistatic systems, it is necessary that system dimensions be much smaller than |
the radiating wavelength (L <€ 4, 4 = 2rc/w and ¢ = [ex] " '/? is the speed of electromagnetic waves).
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Characterigtics Size Scale and Times

:

Fig. 3. With characteristic size scale I* = [¢/u]'/*/a, systems are EQS if the system length scale [ < [* and
are MQS if I > I*. The MQS and EQS regimes both become quasistationary conduction (QSC) at low
frequencies such that both wt, < 1 and wr, < 1. :
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The Vaschy-Buckingham Theorem of Dimensgional Analysis

Parameter units in the MKSA system.

L € o T t
L -3 -3 0 1
M 1 —1 —1 0 0
T —2 4 1 0
[ —2 2 2 0 0

Three characteristic times, namely T, T. and 1,,, appear as soon as we represent r and ¢ in terms of the fundamental
physical parameters €, p and o. In the MKSA system for example, expressed in terms of mass M (Kg), length L (m), time
T (s) and current I (A), the parameters’ dimensions are

M
[e]=[LI M) T2,
(o] = (L) M] TP

Considering the numerical part of Table 1 as a 4 x 5 matrix, and remarking that the last two columns of the so-defined
matrix contain just one non-zero unitary entry and that the last line is minus twice the second, the matrix rank is 3. Two
parameters (Tt and ¢) can be expressed as functions of three others (j, € and o). To this purpose, we seek for «, g, v, 1,
¢z, and c3 reals such that the following two ratios are dimensionless:

t/(n“€’a?)=001), €/(n€209) = 0(1).
The first ratio yields the following linear system

«—3-3y =0,
a—-pf—-y=0,
—20+4+3y =1,
20 +28+2y =0

whose solution is @ =0, g =1, and y = —1 (the fourth equation coincides with the second one up to a multiplicative
factor —2). We introduce the first quantity 7, = ¢ /o and we have 7 /1. = 0(1). Indeed, 7, is the electric charge diffusion
time that is the characteristic time during which the simple electric charge decays in a conductor.

For the second ratio, we have to find ¢y, ¢z, and c3 solution of a similar linear system with right-hand side equal
to (1,0.0,0)". We thus get ¢; = —1/2, ¢ = 1/2, and ¢3 = —1. We introduce (* = (€/jt)/o and we have £/(* = 0(1).
Since £/¢* = potc = po £%(c/¢), a natural choice is to set Ten = £/c and 1, = o £2. The quantity 1, is the current density



Les erreurs/oublis/impasses de 1973

- Dans la limite magnétique, les courants peuvent etre instationnaires méme si
la densit¢ de courant est 1irrotationnelle

- Dans la limite magnetique, une densité de courant vue d’un référentiel en
mouvement est equivalent a une densite de charge

- Dans la limite ¢lectrique, les condensateurs marchent

- La force de Lorentz doit étre définie dans le référentiel en mouvement

- Deux theoremes de Poynting sont nécessaires

- Les relations constitutives doivent etre genéralisces

- Les limites ne dépendent pas du systeme d’unités

- ¢ n’est pas la vitesse de la lumiere mais le facteur de conversion d’unite

- Quid des conditions de jauges ?



Approche “Temporelle” dans les Milieux
(Haus & Melcher, Moreau, Davidson, Fauve & Petrelis)
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Electrical equations

In Electrohydrodynamics Maxwell’s equations reduce to the
quasi-electrostatic equations:
aq

V-D =g, V X E=0, E—i—V-J:O, (1)

where g denotes the volume charge density.
For this to be true we must have
1 1

Wi = 2 H?> < W, = 5652 (2)

Antonio Castellanos: Fundamentals of Electrohydrodynamics for dielectric liquids

http://www.personal.eoton.ac.uk/jeelxO7/downloads/ehd workshop/presentations/ antonio/EHD-Southampton.pdf
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Electrical equations (continuation)

From

VxH:J-f—a—D
ot

the two following inequalities must be satisfied

1 / /
Jo < Eg E—, g 2T— K 1
1 C A

For ohmic liquids, Jo = o Ep, the first inequality is
(oul?)/(0/€) = Tm/Te < 1.

Antonio Castellanos: Fundamentals of Electrohydrodynamics for dielectric liquids

http://www.personal.eoton.ac.uk/jeelxO7/downloads/ehd workshop/presentations/ antonio/EHD-Southampton.pdf
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Dimensional analysis

One considers field problems where
E = e& , with e a reference quantity and £ a non-dimensional vector (of order 1)
¢ , a characteristic spatial dimension

T , a characteristic time constant
the time interval in which significant changes of the field quantities arise

v = f velocity of the phenomenon in the medium or of the medium
Cm = ﬁ velocity of light in the medium (c in the empty space)

spatial differentiation 0. FE is approximated by

¢
l

time differentiation 0;FE is approximated by ;

L e—— ——



Galilean limits of Maxwell equations : for fields

In the empty space, two velocities and scalings appearing : i

b
VxE=-8B  — %N— —~ e~vh (v=1)

T

V x H = 8,D b e b~ 2 — 1

X — Ut — WNT — Nzg'e (C—m
| e = ch | e=vh |
v = c yields ; e ,»and v < c yields which results in v = ¢, wrong!
= — = Se€
C C

This means that for v < ¢, the two scalings are not simultaneously valid

thus Faraday and Ampere laws cannot be coupled

To choose the scaling, look at the field sources (charges or currents) !

R ———— —————




Galilean limits of Maxwell equations : for sources

V-D=p — GOTQNP and VxH=J — ﬁf\al
b
ceoy  pc pc  Jo€pce pc e

if J > pc then e < cb, thus MQS (the dielectric effect of charges is negligible)

if J < pc, then e > ¢b, thus EQS (the conducting effect is negligible)

R S ————— ——



Galilean limits of Maxwell equations : for potentials

A = aA (magnetic vector potential), V = VV (electric scalar potential) \
B =V x Avyields b ~ 7 (always true)

E=—-0;A—-VV vyields e~ =+ % thus

e if ca < V then

4 a '/
(v < ) va <V, —a &V, — & —
T T /
SO € v %, thus E = —-VV and V x E = 0 (EQS).
e if ca > V then
. a \'J
a > V is compensated by v < ¢, -~y
-

so B =—0:A— VV thatyields V x E = -8B (MQS).
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Galilean limits of Maxwell equations : for gauge condition

A = aA (magnetic vector potential), V = VV (electric scalar potential)

Vv vV

1
. — 8V = — 4+ —~0 — ~
Vv A+c2 t 0, +02T . ca-+ . 0

RSSO

e ca>V (MQS) then a > V yields V- A = 0 Coulomb gauge condition

e ca <V (EQS) plus = < 1 yields Lorenz gauge condition
a
b~ 7 (always true) and v
I3

é~C—7~§>>1 (MQS)

Lorenz gauge condition on potentials, V - A + zlgatV = 0, implies % ~ zgv;

'} 2
e cTa
[4 fv

b ol a
—~c—f~c—‘=§<<1 (EQS)
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Stratton gauge condition (1941)

V- -A+ pedV =—poV, %V' - A +pe§8t:V = —poVVy

Voov=—Lt Vv rir—1m
Cm Q@ & ecma

£
=

V' -A+
Cm

Dimensionless ratios

& = %\/% is the constitutive length
Tem = é the light transit time in the medium

Te = - the charge relaxation time

Tm = pof? the magnetic diffution time such that Tem = /TeTm.




Domains of validity

Tem Tm T
EQS: 0 Tm Tem Te T
Te — £ Tm — £ z := log(—=—) = log(4)
Tem - e ] Temn - e: ? - g Temn ? y - g

T =Tm
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V.A + pc% =~ ()




